Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network.
نویسندگان
چکیده
Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) have been adapted to growth on high concentrations of 2,6-dichlorobenzonitrile, an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of these cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on 2,6-dichlorobenzonitrile also differ from nonadapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonan and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-ester and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in these unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition.
منابع مشابه
MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile.
We have identified a gene, denoted PttMAP20, which is strongly up-regulated during secondary cell wall synthesis and tightly coregulated with the secondary wall-associated CESA genes in hybrid aspen (Populus tremula x tremuloides). Immunolocalization studies with affinity-purified antibodies specific for PttMAP20 revealed that the protein is found in all cell types in developing xylem and that ...
متن کاملTensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes.
The mechanical properties of plant organs depend upon anatomical structure, cell-cell adhesion, cell turgidity, and the mechanical properties of their cell walls. By testing the mechanical responses of Arabidopsis mutants, it is possible to deduce the contribution that polymers of the cell wall make to organ strength. We developed a method to measure the tensile parameters of the expanded regio...
متن کاملThe Identification of Two Arabinosyltransferases from Tomato Reveals Functional Equivalency of Xyloglucan Side Chain Substituents1[W][OPEN]
Xyloglucan (XyG) is the dominant hemicellulose present in the primary cell walls of dicotyledonous plants. Unlike Arabidopsis (Arabidopsis thaliana) XyG, which contains galactosyl and fucosyl substituents, tomato (Solanum lycopersicum) XyG contains arabinofuranosyl residues. To investigate the biological function of these differing substituents, we used a functional complementation approach. Ca...
متن کاملWidespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells.
BACKGROUND AND AIMS Covalent linkages between xyloglucan and rhamnogalacturonan-I (RG-I) have been reported in the primary cell walls of cultured Rosa cells and may contribute to wall architecture. This study investigated whether this chemical feature is general to angiosperms or whether Rosa is unusual. * METHODS Xyloglucan was alkali-extracted from the walls of l-[1-3H]arabinose-fed suspens...
متن کاملCovalent Cross-Links in the Cell Wall.
In current models of the organization of polymers in primary cell walls of plants it is proposed that cellulosic microfibrils are embedded in a matrix of intenvoven noncellulosic polysaccharides and proteins (Talbott and Ray, 1992; Carpita and Gibeaut, 1993). There is good evidence that the microfibril surfaces are coated with noncellulosic polysaccharides such as xyloglucans and, possibly, ara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 94 3 شماره
صفحات -
تاریخ انتشار 1990